| Authors | 
            
             Mitrokhin Maksim Aleksandrovich, Doctor of engineering sciences, head of sub-department of computer engineering, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: vt@pnzgu.ru 
            Shchegolikhin Yaroslav Pavlovich, Student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: yaroslav.schegolikhin@yandex.ru 
            Neshko Dar'ya Olegovna, Student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: daria-uno@yandex.ru 
            Semenkin Maksim Viktorovich, Director general, “CodeInside” LLC (64b Suvorova street, Penza, Russia), E-mail: maxim.semekin@codeinside.ru  
             | 
        
        
            | Abstract | 
            
             Background. The object of the study is the OpenCV library. The subject of the study is the means of the library for the recognition of car licence plate. The aim of the study is to evaluate the effectiveness of OpenCV library in a wide range of image acquisition conditions. 
            Materials and methods. The research is performed with using of the pattern recognition and image processing methods. 
            Results. The technique for improving the means of recognition car licence plate are proposed, their efficiency is shown on the experimental data. 
            Conclusions. The proposed solutions allow to increase the efficiency of standard OpenCV library tools, based on Haar cascades, but it requires additional computing costs.  
             | 
        
        
            | References | 
            
             1. Makkinni Ues Python i analiz dannykh [Python and data analysis]. Moscow: DMK Press, 2015, 482 p. [In Russian] 
            2. RoboCraft. Available at: http://robocraft.ru/blog/computervision/264.html (accessed Febr. 23, 2019). 
            3. Fedotov N. G., Goldueva D. A., Mokshanina M. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2017, no. 2 (42), pp. 29–41. DOI 10.21685/2072-3059-2017-2-3. [In Russian] 
            4. Vuzlit.ru. Available at: https://vuzlit.ru/954633/kombinirovannyy_algoritm_otslezhivaniya_peremescheniy (accessed Febr. 26, 2019). [In Russian] 
            5. Viola P., Jones M. Proceedings Conference of Computer Vision and Pattern Recognition. 2001, vol. 1, pp. 511–518. DOI 10.1109/CVPR.2001.990517. 
            6. Habr. Available at: https://habr.com/ru/post/163663/ (accessed Jan. 25, 2019). 
            7. OpenCV Python povorachivaet izobrazhenie na X gradusov vokrug opredelennoy tochki [PenCV Python rotates an image X degrees around a specific point]. qa.ru. Available at: http://qaru.site/questions/272130/opencv-python-rotate-image-by-x-degrees-aroundspecific-point (accessed Jan. 27, 2019). [In Russian] 
            8. Lukyanitsa A. A., Shishkin A. G. Tsifrovaya obrabotka videoizobrazheniy [Video image digital processing]. Moscow: Ay-Es-Es Press, 2009, 512 p. [In Russian] 
             
             |